skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ogbaje, Moses"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organic semiconductors (OSCs) offer the capacity for distinctive and finely tuned electronic, optical, thermal, and mechanical properties, making them of interest across a range of energy generation and storage, sensor, lighting, display, and electronics applications. The pathway from molecular building block design to material, however, is complicated by complex synthesis– processing–structure–property–function relationships that are inherent to OSCs. The adoption of artificial intelligence (AI) tools, including the subset of AI referred to as machine learning (ML), into the materials design and discovery pipeline offers significant potential to overcome the multifaceted roadblocks along this pathway. Here, we review recent advances in the application of AI/ML for OSCs, with a focus on the development and use of ML. We present a brief primer on ML models and then highlight efforts wherein ML is used to predict molecular and material properties and discover new molecular building blocks and OSCs. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026